
Xinran Zhao
@xinranz3
Current Ph.D. student @LTIatCMU
Ex: @stanfordnlp,@hkustknowcomp,@TencentGlobal AI Lab at Bellevue, @GoogleDeepMind
ID: 1702743707798347776
https://colinzhaoust.github.io/ 15-09-2023 17:58:43
16 Tweet
147 Takipçi
310 Takip Edilen








Dense X Retrieval: What Retrieval Granularity Should We Use? by Tong Chen, Hongwei Wang, Sihao Chen, Wenhao Yu, Kaixin Ma, Xinran Zhao, Dong Yu, and Hongming Zhang Session: Information Retrieval and Text Mining 1, Session 02, 11:00-12:30 aclanthology.org/2024.emnlp-mai…

MixGR: Enhancing Retriever Generalization for Scientific Domain through Complementary Granularity by Fengyu Cai, Xinran Zhao, Tong Chen, Sihao Chen, Hongming Zhang, Iryna Gurevych, & Heinz Koeppl Dialogue & Interactive Systems 3, Session 12, 14:00-15:30 aclanthology.org/2024.emnlp-mai…

Overall, our work serves to challenge n-gram data membership definition in LLMs, and call for better definitions that capture human intuition as it underpins many important topics today. Paper: arxiv.org/abs/2503.17514 A collab of Stanford AI Lab, @StanfordNLP, and

John Zimmerman presenting at #CHI2025 Catch him and Ask about our AI Literacy paper — best paper honorable mention Motahhare Eslami We thank Ken Holstein Ken Koedinger Amy Ogan Howard(Ziyu) Han Yanlin Du for their feedback on this journey. programs.sigchi.org/chi/2025/progr…





MoR: Better Handling Diverse Queries with a Mixture of Sparse, Dense, and Human Retrievers Jushaan Kalra et al. present a zero-shot framework that dynamically combines heterogeneous retrievers for each query. 📝arxiv.org/abs/2506.15862 👨🏽💻github.com/Josh1108/Mixtu…
