Peter Wonka (@peter_wonka) 's Twitter Profile
Peter Wonka

@peter_wonka

Prof. of Computer Science at KAUST | Computer Vision, Machine Learning, Computer Graphics, Deep Learning

ID: 1464154405503225859

linkhttp://peterwonka.net calendar_today26-11-2021 08:50:05

47 Tweet

944 Takipçi

102 Takip Edilen

Matthias Niessner (@mattniessner) 's Twitter Profile Photo

.Biao Zhang presenting our 3DShape2VecSet paper at #SIGGRAPH2023!!! We propose a 3D representation for neural fields and generative diffusion models for figh-fidelity shape generation. Super cool work from Peter Wonka's group in collab with Jiapeng Tang.

.<a href="/_BiaoZhang/">Biao Zhang</a> presenting our 3DShape2VecSet paper at #SIGGRAPH2023!!! 

We propose a 3D representation for neural fields and generative diffusion models for figh-fidelity shape generation.

Super cool work from <a href="/peter_wonka/">Peter Wonka</a>'s group in collab with <a href="/jiapeng_tang/">Jiapeng Tang</a>.
Peter Wonka (@peter_wonka) 's Twitter Profile Photo

ICCV 2023: "SATR: Zero-Shot Semantic Segmentation of 3D Shapes". Ahmed Abdelreheem (Ahmed Abdelreheem), Ivan Skorokhodov (Ivan Skorokhodov), Maks Ovsjanikov, Peter Wonka. An algorithm harnessing pret-trained 2D models for 3D mesh segmentation. Project page: samir55.github.io/SATR/"

Peter Wonka (@peter_wonka) 's Twitter Profile Photo

Zero-Shot 3D Shape Correspondence, ACM Siggraph Asia 2023 Ahmed Abdelreheem (Ahmed Abdelreheem), Abdelrahman Eldesokey (Abdo Eldesokey), Maks Ovsjanikov, Peter Wonka samir55.github.io/3dshapematch/ Computing correspondences between dissimilar shapes using pretrained language models

Peter Wonka (@peter_wonka) 's Twitter Profile Photo

We propose a new type of diffusion model that diffuses continuous functions: Functional Diffusion. Biao Zhang (Biao Zhang ) and Peter Wonka. arXiv arxiv.org/abs/2311.15435 1zb.github.io/functional-dif…

Peter Wonka (@peter_wonka) 's Twitter Profile Photo

Back to 3D: Few-Shot 3D Keypoint Detection with Back-Projected 2D Features Thomas Wimmer, Peter Wonka, Maks Ovsjanikov arxiv.org/abs/2311.18113 wimmerth.github.io/back-to-3d.html Projected 2D features + geodesic distance optimization gives new SOTA for few-shot keypoint detection

Back to 3D: Few-Shot 3D Keypoint Detection with Back-Projected 2D Features
Thomas Wimmer, Peter Wonka, Maks Ovsjanikov

arxiv.org/abs/2311.18113
wimmerth.github.io/back-to-3d.html

Projected 2D features + geodesic distance optimization gives new SOTA for few-shot keypoint detection
Peter Wonka (@peter_wonka) 's Twitter Profile Photo

A framework to control diffusion-generated images using boxes as proxies for geometry (together with Shariq Farooq Bhat Shariq Farooq and Niloy Mitra)

Peter Wonka (@peter_wonka) 's Twitter Profile Photo

I collaborated with several colleagues from CAS and Sichuan on a survey on image and video inpaiting: arxiv.org/abs/2401.03395

Peter Wonka (@peter_wonka) 's Twitter Profile Photo

LLM Blueprint: Enabling Text-to-Image Generation with Complex and Detailed Prompts Hanan Gani (Hanan @CVPR 2025 🇺🇸), Shariq Farooq Bhat (Shariq Farooq), Muzammal Naseer, Salman Khan, Peter Wonka ICLR 2024 hananshafi.github.io/llm-blueprint/

KAUST (@kaust_news) 's Twitter Profile Photo

Join the #KAUST Global Fellowship Program, an incredible opportunity for exceptional postdocs with groundbreaking ideas to advance Saudi's research priorities. The program offers access to cutting-edge research tools, top-notch facilities and expert mentorship.

Biao Zhang (@_biaozhang) 's Twitter Profile Photo

📢𝐆𝐞𝐨𝐦𝐞𝐭𝐫𝐲 𝐃𝐢𝐬𝐭𝐫𝐢𝐛𝐮𝐭𝐢𝐨𝐧𝐬 We propose to represent general geometries as distributions using diffusion models. project site: 1zb.github.io/GeomDist/ arxiv: arxiv.org/abs/2411.16076 dataset: huggingface.co/datasets/Zbalp… Collaboration with Jing Ren and Peter Wonka

Zhenjun Zhao (@zhenjun_zhao) 's Twitter Profile Photo

T-3DGS: Removing Transient Objects for 3D Scene Reconstruction Vadim Pryadilshchikov, Alexander Markin, Artem Komarichev, Ruslan Rakhimov, Peter Wonka, Evgeny Burnaev tl;dr: unsupervised transient detector and transient mask propagation arxiv.org/abs/2412.00155

T-3DGS: Removing Transient Objects for 3D Scene Reconstruction

Vadim Pryadilshchikov, Alexander Markin, Artem Komarichev, <a href="/rusrakhimov/">Ruslan Rakhimov</a>, <a href="/peter_wonka/">Peter Wonka</a>, <a href="/burnaevevgeny/">Evgeny Burnaev</a>

tl;dr: unsupervised transient detector and transient mask propagation

arxiv.org/abs/2412.00155
Mo (@mo_li_kaust) 's Twitter Profile Photo

Our preprint on deep learning based high-throughout human #blastoid classification is out It helps unbiased quality assessment of a large number of blastoids thx for Prof Peter Wonka and his team’s collaboration KAUST BESE KAUST Research bioRxiv biorxiv.org/cgi/content/sh…

Our preprint on deep learning based high-throughout human #blastoid classification is out It helps unbiased quality assessment of a large number of blastoids thx for Prof <a href="/peter_wonka/">Peter Wonka</a> and his team’s collaboration <a href="/KAUST_BESE/">KAUST BESE</a> <a href="/KaustResearch/">KAUST Research</a> <a href="/biorxivpreprint/">bioRxiv</a> biorxiv.org/cgi/content/sh…
Matthias Niessner (@mattniessner) 's Twitter Profile Photo

📢📢 𝐏𝐫𝐄𝐝𝐢𝐭𝐨𝐫𝟑𝐃: 𝐅𝐚𝐬𝐭 𝐚𝐧𝐝 𝐏𝐫𝐞𝐜𝐢𝐬𝐞 𝟑𝐃 𝐒𝐡𝐚𝐩𝐞 𝐄𝐝𝐢𝐭𝐢𝐧𝐠 📢📢 We propose a training-free 3D shape editing approach that rapidly and precisely edits the regions intended by the user and keeps the rest as is. Using a quickly brushed mask and a

Anton Obukhov (@antonobukhov1) 's Twitter Profile Photo

Update about the 4th Monocular Depth Estimation Workshop at #CVPR2025: 🎉 Website is LIVE! (link below) 🎉 Keynotes: Peter Wonka (Peter Wonka), Yiyi Liao (Yiyi Liao), and Konrad Schindler 🎉 Challenge updates: new prediction types, baselines & metrics

Update about the 4th Monocular Depth Estimation Workshop at #CVPR2025: 
🎉 Website is LIVE! (link below)
🎉 Keynotes: Peter Wonka (<a href="/peter_wonka/">Peter Wonka</a>), Yiyi Liao (<a href="/yiyi_liao_/">Yiyi Liao</a>), and Konrad Schindler
🎉 Challenge updates: new prediction types, baselines &amp; metrics
VCAI - MPI for Informatics (@vcaimpi) 's Twitter Profile Photo

Our paper, "Training-free Video Semantic Segmentation based on Diffusion Models," was accepted at CVPR 2025! A great collaboration between KAUST and MPI. Image diffusion models are powerful for image generation and serve as strong backbones with rich semantic understanding.