smile (@smilex_p) 's Twitter Profile
smile

@smilex_p

ID: 1439040484689649668

calendar_today18-09-2021 01:36:11

361 Tweet

127 Followers

2,2K Following

Aniket Vashishtha (@aniketvashisht8) 's Twitter Profile Photo

Can we teach Transformers Causal Reasoning? We propose Axiomatic Framework, a new paradigm for training LMs. Our 67M-param model, trained from scratch on simple causal chains, outperforms billion-scale LLMs and rivals GPT-4 in inferring cause-effect relations over complex graphs

Can we teach Transformers Causal Reasoning?

We propose Axiomatic Framework, a new paradigm for training LMs. Our 67M-param model, trained from scratch on simple causal chains, outperforms billion-scale LLMs and rivals GPT-4 in inferring cause-effect relations over complex graphs
Math Cafe (@riazi_cafe_en) 's Twitter Profile Photo

UW–Madison's "Mathematical Techniques for Algorithm Analysis" Lecture Notes: pages.cs.wisc.edu/~cs809-1/lectu… Course Material: pages.cs.wisc.edu/~cs809-1/

UW–Madison's "Mathematical Techniques for Algorithm Analysis"

Lecture Notes: pages.cs.wisc.edu/~cs809-1/lectu…

Course Material: pages.cs.wisc.edu/~cs809-1/
Kirk Borne (@kirkdborne) 's Twitter Profile Photo

Graph Data Modeling in #Python — Practical guide to curating, analyzing, & modeling data with graphs: packtpub.com/en-us/product/… from Packt Data Science & Machine Learning #ad — #DataScience #AI #DataScientist — 𝒦𝑒𝓎 𝐹𝑒𝒶𝓉𝓊𝓇𝑒𝓈: 🔵Transform relational data models into graph data model while

Graph Data Modeling in #Python — Practical guide to curating, analyzing, &amp; modeling data with graphs: packtpub.com/en-us/product/… from <a href="/PacktDataML/">Packt Data Science & Machine Learning</a> #ad
—
#DataScience #AI #DataScientist
—
𝒦𝑒𝓎 𝐹𝑒𝒶𝓉𝓊𝓇𝑒𝓈:

🔵Transform relational data models into graph data model while
首都大の猫『数学のための英語教本』 (@shutodainohito) 's Twitter Profile Photo

この本の写経は英文を書く勉強としてとてもいいと思います。欧州数学会出版のたった50ページの本です。著者名Jerzy Trzeciak で検索おすすめ

この本の写経は英文を書く勉強としてとてもいいと思います。欧州数学会出版のたった50ページの本です。著者名Jerzy Trzeciak で検索おすすめ
結城浩 / Hiroshi Yuki (@hyuki) 's Twitter Profile Photo

『数学ガール/リーマン予想』ついに登場。 数学青春物語、堂々の完結へ! ただいま予約受付中! (2025年8月刊行予定) ◆結城浩『数学ガール/リーマン予想』 amzn.to/4lMB9hq #数学ガール

『数学ガール/リーマン予想』ついに登場。
数学青春物語、堂々の完結へ!
ただいま予約受付中!
(2025年8月刊行予定)

◆結城浩『数学ガール/リーマン予想』
amzn.to/4lMB9hq
#数学ガール
結城浩 / Hiroshi Yuki (@hyuki) 's Twitter Profile Photo

みなさま応援ありがとうございます!😭刊行はまだ先になりますが、ご予約いただきますと「非常に大きな追い風」となりますので、よろしくお願いいたします🙇もちろんリポスト、いいね、引用ポストなども感謝です!

Simone Scardapane (@s_scardapane) 's Twitter Profile Photo

*Deep Learning is Not So Mysterious or Different* by Andrew Gordon Wilson Fantastic paper showing that many interesting phenomena (e.g., double descent) can be understood in the frameworks of PAC-Bayes and "soft inductive biases". Great visuals! 😍 arxiv.org/abs/2503.02113

*Deep Learning is Not So Mysterious or Different*
by <a href="/andrewgwils/">Andrew Gordon Wilson</a> 

Fantastic paper showing that many interesting phenomena (e.g., double descent) can be understood in the frameworks of PAC-Bayes and "soft inductive biases". Great visuals! 😍

arxiv.org/abs/2503.02113
William Gilpin (@wgilpin0) 's Twitter Profile Photo

At #ICLR2025 , check out our poster today on forecasting chaos with foundation models. Yuanzhao Zhang 章元肇 Poster #43. Thu 24 Apr, 3 - 5:30 pm in Hall 3 + Hall 2B

At #ICLR2025 , check out our poster today on forecasting chaos with foundation models. <a href="/YuanzhaoZhang/">Yuanzhao Zhang 章元肇</a> 

Poster #43. Thu 24 Apr, 3 - 5:30 pm in Hall 3 + Hall 2B
Swapna Kumar Panda (@swapnakpanda) 's Twitter Profile Photo

11 FREE Books from MIT for Absolute Beginners - Machine Learning (ML) - Deep Learning (DL) - Reinforcement Learning (RL) - Artificial Intelligence (AI)

11 FREE Books from MIT for Absolute Beginners

        - Machine Learning (ML)
        - Deep Learning (DL)
        - Reinforcement Learning (RL)
        - Artificial Intelligence (AI)
Andrew Lampinen (@andrewlampinen) 's Twitter Profile Photo

How do language models generalize from information they learn in-context vs. via finetuning? We show that in-context learning can generalize more flexibly, illustrating key differences in the inductive biases of these modes of learning — and ways to improve finetuning. Thread: 1/

How do language models generalize from information they learn in-context vs. via finetuning? We show that in-context learning can generalize more flexibly, illustrating key differences in the inductive biases of these modes of learning — and ways to improve finetuning. Thread: 1/
Calc Consulting (@calccon) 's Twitter Profile Photo

You can also solve the classic Double Descent problem (Vallet et. al. 1989) just using Random Matrix Theory Here's an outline of a sketch of the solution. This does not require replicas, and, instead, using just the properties of the Marchenko-Pastur distribution and it's

You can also solve the classic Double Descent problem (Vallet et. al. 1989) just using Random Matrix Theory

Here's an outline of a sketch of the solution.  This does not require replicas, and, instead, using just the properties of the Marchenko-Pastur distribution and it's
Timothy Nguyen (@iamtimnguyen) 's Twitter Profile Photo

Statistical physics for LLMs. Happy with that description :-) The original tweet thread for my paper: x.com/IAmTimNguyen/s… And my Machine Learning Street Talk interview: youtube.com/watch?v=W485bz…

roadmap.sh (@roadmapsh) 's Twitter Profile Photo

Tired of deployment headaches? 😩 Our FREE Cloudflare learning roadmap provides a clear and structured path to understanding and utilizing Cloudflare for your web applications. roadmap.sh/cloudflare