Outerport (@outerport) 's Twitter Profile
Outerport

@outerport

Clarify complex documents and processes (YC S24)

ID: 1810872152503242754

linkhttps://www.outerport.com calendar_today10-07-2024 03:02:50

37 Tweet

485 Followers

4 Following

Outerport (@outerport) 's Twitter Profile Photo

We're working on all the nasty edge cases for text-based RAG (and vision-based RAG too!)- and writing some blog posts on our vision systems soon so stay tuned 😎

Outerport (@outerport) 's Twitter Profile Photo

VDocRAG: Retrieval-Augmented Generation over Visually-Rich Documents (CVPR 2025) TL;DR: Dataset for multi-hop questions on visual documents, self-supervised VLM pre-training, source-available license (NTT License)

VDocRAG: Retrieval-Augmented Generation over Visually-Rich Documents (CVPR 2025)

TL;DR: Dataset for multi-hop questions on visual documents, self-supervised VLM pre-training, source-available license (NTT License)
Outerport (@outerport) 's Twitter Profile Photo

Seeing is Believing? Mitigating OCR Hallucinations in Multimodal Large Language Models Zhentao He, Can Zhang, Ziheng Wu, Zhenghao Chen, Yufei Zhan, Yifan Li, Zhao Zhang, Xian Wang, Minghui Qiu

Seeing is Believing? Mitigating OCR Hallucinations in Multimodal Large Language Models

Zhentao He, Can Zhang, Ziheng Wu, Zhenghao Chen, Yufei Zhan, Yifan Li, Zhao Zhang, Xian Wang, Minghui Qiu
Outerport (@outerport) 's Twitter Profile Photo

Controlled Retrieval-augmented Context Evaluation for Long-form RAG Jia-Huei Ju, Suzan Verberne, Maarten de Rijke, Andrew Yates arxiv.org/abs/2506.20051

Controlled Retrieval-augmented Context Evaluation for Long-form RAG

Jia-Huei Ju, Suzan Verberne, Maarten de Rijke, Andrew Yates

arxiv.org/abs/2506.20051
Outerport (@outerport) 's Twitter Profile Photo

Can LLMs Replace Humans During Code Chunking? The MITRE Corporation Benchmarked on legacy government code written in ALC, MUMPS, Assembly.... LLMs 20% more factual and 10% more useful than human partitioning

Can LLMs Replace Humans During Code
Chunking?

The MITRE Corporation

Benchmarked on legacy government code written in ALC, MUMPS, Assembly.... LLMs 20% more factual and 10% more useful than human partitioning
Outerport (@outerport) 's Twitter Profile Photo

Taming the Untamed: Graph-Based Knowledge Retrieval and Reasoning for MLLMs to Conquer the Unknown Bowen Wang, Zhouqiang Jiang, Yasuaki Susumu, Shotaro Miwa, Tianwei Chen, Yuta Nakashima

Taming the Untamed: Graph-Based Knowledge Retrieval and Reasoning for MLLMs to Conquer the Unknown

Bowen Wang, Zhouqiang Jiang, Yasuaki Susumu, Shotaro Miwa, Tianwei Chen, Yuta Nakashima