Alexander (@alexsludds) 's Twitter Profile
Alexander

@alexsludds

Photonic architect at Lightmatter Corporation. Interests are in Photonic systems and devices for classical information transfer and processing.

ID: 1606429441

calendar_today19-07-2013 17:32:58

46 Tweet

107 Followers

242 Following

Jacques Carolan (@jacquescarolan) 's Twitter Profile Photo

My final coffee with (some of) the Dirk Englund group members. Honoured to have these inspiring, hardworking and tenacious friends as colleagues. Gonna miss you all. From RLE at MIT Massachusetts Institute of Technology (MIT) -> Niels Bohr Institute in Copenhagen! Excited for the next adventure 💕

My final coffee with (some of) the <a href="/Dirk_Englund/">Dirk Englund</a> group members.  Honoured to have these inspiring, hardworking and tenacious friends as colleagues. Gonna miss you all. From <a href="/RLEatMIT/">RLE at MIT</a> <a href="/MIT/">Massachusetts Institute of Technology (MIT)</a> -&gt; Niels Bohr Institute in Copenhagen! Excited for the next adventure 💕
Lightmatter (@lightmatterco) 's Twitter Profile Photo

Here's the methodology we developed to perform design verification of the photonic, analog, and digital components of our processors: medium.com/lightmatter/te…

Pınar Demetçi (@spinar_d) 's Twitter Profile Photo

Our preprint on single cell multi-omic data integration w/ Gromov-Wasserstein optimal transport is up: biorxiv.org/content/10.110… This method uses fewer hyperparameters and is computationally more efficient compared to other unsupervised methods. All comments welcome!

Alexander (@alexsludds) 's Twitter Profile Photo

Our work proposing optics as a means of creating freely scalable digital machine learning accelerators with no length-dependent cost is up on arXiv: arxiv.org/abs/2006.13926

Dirk Englund (@dirk_englund) 's Twitter Profile Photo

`Freely scalable and reconfigurable optical hardware for deep learning" ArXiv arXiv:2006.13926 (2020) : scirate.com/arxiv/2006.139… It was vital to get at true bottlenecks by benchmarking studies with amazing electronics-based AI experts, Vivienne Sze and Prof Joel Emer - thanks!

MIT Quantum Photonics (@mitqpg) 's Twitter Profile Photo

Is it possible to program perfect optical transformations from imperfect components, without significant hardware overhead? Saumil, Ryan, and Dirk find the answer is yes through a deterministic algorithm, provided hardware errors are small enough: arxiv.org/abs/2103.04993

MIT Quantum Photonics (@mitqpg) 's Twitter Profile Photo

Can high-performance machine learning run on low-power devices? After a few-second delay waiting for cloud-delegated inference, Apple's Siri might chime "No." But in a new article on ArXiv (arxiv.org/pdf/2203.05466…), we argue the opposite, ..

MIT Quantum Photonics (@mitqpg) 's Twitter Profile Photo

Dr Ryan Hamerly RLE at MIT NTT Research Xupi and Co. do a deep-dive on NetCast, our optical neural-network architecture designed for edge computing: arxiv.org/abs/2207.01777.

MIT Center for Quantum Engineering (@cqe_mit) 's Twitter Profile Photo

Now out in arXiv.org from MIT Prof. Dirk Englund, MIT Quantum Photonics, NTT Research & Xupi: "Netcast: Low-Power Edge Computing with WDM-defined Optical Neural Networks" by R. Hamerly, Alexander, S. Bandyopadhyay, Z. Chen, Z. Zhong, L. Bernstein, & Dirk Englund. arxiv.org/abs/2207.01777

MIT Quantum Photonics (@mitqpg) 's Twitter Profile Photo

In work by Dr Zaijun Chen et al , the Dirk Englund and Dr Ryan Hamerly AI team MIT Quantum Photonics RLE at MIT MIT EECS Microsystems Technology Laboratories, in collaboration with Prof Stephan Reitzenstein and Prof James A. Lott & groups of TU Berlin, introduce an ONN system based on a network of VCSEL-arrays..

MIT Center for Quantum Engineering (@cqe_mit) 's Twitter Profile Photo

Now in arXiv.org from MIT Prof. Dirk Englund, MIT Quantum Photonics, w/ TU Berlin: "Deep Learning with Coherent VCSEL Neural Networks" Zaijun Chen, Alexander, R. Davis, I. Christen, L. Bernstein, T. Heuser, N. Heermeier, J. A, Lott, S. Reitzenstein, R. Hamerly, D. Englund. arxiv.org/abs/2207.05329

Alexander (@alexsludds) 's Twitter Profile Photo

Smart devices, such as cell phones and sensors, can't run the best machine learning models. The reason: large power and latency costs from moving model weights on size, weight and power constrained hardware. In this weeks issue of…lnkd.in/epSDw2T6 lnkd.in/eZ5uYupB

MIT Quantum Photonics (@mitqpg) 's Twitter Profile Photo

Check out the latest Science podcast with lead author Alexander, discussing network based deep learning : science.org/content/podcas…