
Ulrik_F-J
@ulrikfj1
MSc of Nanoscience. PhD fellow at @jensengroup_cph and @MLSectionUCPH using ML for structure prediction of metal oxide nanoparticles.
ID: 1226102952642912257
https://github.com/UlrikFriisJensen 08-02-2020 11:18:30
39 Tweet
99 Takipçi
101 Takip Edilen


📢 Excited to share our Perspective in Chemical Science with those interested in the synergy of machine learning & experimental scattering and spectroscopy data! 🧠🔬 #MachineLearning #MaterialsChemistry Paper: pubs.rsc.org/en/content/art… @kirsten_mj Raghav{endra}| ರಾಘವೇಂದ್ರ Keith Butler


Looking for fast X-ray/neutron scattering pattern calculations in Python? DebyeCalculator supports GPU and is now published in JOSS : joss.theoj.org/papers/10.2110… Frederik Lizak Johansen Ulrik_F-J Raghav{endra}| ರಾಘವೇಂದ್ರ @kirsten_mj


Andy S. Anker et al.: ClusterFinder: a fast tool to find cluster structures from pair distribution function data Københavns Uni Københavns Uni Københavns Uni Københavns Uni Københavns Uni... #IUCr scripts.iucr.org/cgi-bin/paper?…

#KDD2024 Excited that our paper that introduces #CHILI: a new, large-scale graph #ML dataset for inorganic materials chemistry will be presented at SIGKDD 2025! Congratulations to Ulrik_F-J, Frederik Lizak Johansen for a strong effort. @kirsten_mj Andy Sode Anker

#KDD2024 🚀 I'm delighted to share that our latest paper, featuring #CHILI, a graph #ML dataset for inorganic materials chemistry, will be presented at SIGKDD 2025! Kudos to Ulrik_F-J Andy Sode Anker Raghav{endra}| ರಾಘವೇಂದ್ರ @kirsten_mj !🎉

First benchmarking results using our large-scale nanomaterials dataset, #CHILI, to be presented at SIGKDD 2025 are coming out. If you are looking for a challenging dataset for GNN- or transformer- methods, put them to test against CHILI. arxiv.org/abs/2402.13221


It is SIGKDD 2025 week! If you are #KDD2024 do check out our work on a new large-scale inorganic materials dataset for graph ML. First authos on this work Ulrik_F-J and Frederik Lizak Johansen will be there! Paper: dl.acm.org/doi/10.1145/36…





For the last part in Advanced Topics in Deep Learning course, we had Ulrik_F-J present our SIGKDD 2025 paper on a new dataset for Graph ML, and Sebastian Eliassen our IEEE ICASSP paper on activation quant. of GNNs. KDD: arxiv.org/abs/2402.13221 ICASSP: arxiv.org/abs/2309.11856
