LangDB (@langdbai) 's Twitter Profile
LangDB

@langdbai

Govern, Secure, and Optimize AI Traffic across 150+ LLMs using OpenAI-Compatible APIs

ID: 1538036135913730048

linkhttps://langdb.ai/ calendar_today18-06-2022 05:49:41

1,1K Tweet

340 Followers

133 Following

LangDB (@langdbai) 's Twitter Profile Photo

LangDB at NIT Hamirpur! ๐Ÿš€ Excited to share that LangDB was an in-kind sponsor at NIT Hamirpur, supporting the next wave of AI & ML innovators! ๐Ÿ’ก Events like these help shape the future of AI, ML, and LLMs! Huge shoutout to the organizers for an amazing event! Looking forward

LangDB at NIT Hamirpur! ๐Ÿš€

Excited to share that LangDB was an in-kind sponsor at NIT Hamirpur, supporting the next wave of AI & ML innovators! ๐Ÿ’ก

Events like these help shape the future of AI, ML, and LLMs!

Huge shoutout to the organizers for an amazing event! Looking forward
mattbolds (@pelati_matteo) 's Twitter Profile Photo

The first inbound lead from our PR AI Agent ๐Ÿ˜Ž A few weeks ago, I created Amandaโ€”a savvy PR agent that trolls hashtag #reddit and hashtag #hackernews for discussions about AI gateways, multi-LLM access, or competitors to LangDB . The plan? A demo to show off how LangDB makes

The first inbound lead from our PR AI Agent ๐Ÿ˜Ž

A few weeks ago, I created Amandaโ€”a savvy PR agent that trolls hashtag #reddit and hashtag #hackernews for discussions about AI gateways, multi-LLM access, or competitors to <a href="/LangdbAi/">LangDB</a> . The plan? A demo to show off how LangDB makes
LangDB (@langdbai) 's Twitter Profile Photo

AI models are powerful, but without tracking, theyโ€™re a black box. Building with AI isnโ€™t just about picking a modelโ€”itโ€™s about knowing what happens under the hood. ๐Ÿ” Which model performs best? ๐Ÿ“Š Where is the cost leaking? ๐Ÿงฉ How do multi-agent workflows play out?

AI models are powerful, but without tracking, theyโ€™re a black box.

Building with AI isnโ€™t just about picking a modelโ€”itโ€™s about knowing what happens under the hood.

๐Ÿ” Which model performs best?
 ๐Ÿ“Š Where is the cost leaking?
 ๐Ÿงฉ How do multi-agent workflows play out?
Mrunmay Shelar (@mrunmayshelar) 's Twitter Profile Photo

Google new Gemini 2.5 Pro is out and it's raising the bar. Gemini 2.5 Pro is already available on LangDB , making it easy to explore and compare with other top models. Checkout: app.langdb.ai/models More details and benchmark from Google: blog.google/technology/gooโ€ฆ

Mrunmay Shelar (@mrunmayshelar) 's Twitter Profile Photo

Built a multi-agent setup using OpenAI with models like Claude, Gemini, and Grok. LangDB handled the model switching and provided trace-level visibility into agent decisions, tool usage, and execution time Blog: blog.langdb.ai/integrate-gemiโ€ฆ #OpenAI #AgenticAI #LangDB

Mrunmay Shelar (@mrunmayshelar) 's Twitter Profile Photo

๐Ÿš€ Itโ€™s not just Gemini making noise. Now live on LangDB: ๐Ÿฆ™ Meta LLaMA 4 variants ๐Ÿง  xAI Grok-3 & Grok-3-mini Run, trace, and compare them - all via one API. No provider lock-in. Just full control. Try them now โ†’ app.langdb.ai/models #langDB #Llama4 #GROK3AI

Mrunmay Shelar (@mrunmayshelar) 's Twitter Profile Photo

OpenAI GPT-4.1 Family is now live on LangDB Pick your GPT: โš™๏ธ 4.1 โ€“ 55% SWE-bench, 1M context โšก 4.1 mini โ€“ 40% faster, 3x smarter than 4o mini ๐Ÿš€ 4.1 nano โ€“ fastest & cheapest ๐Ÿ“‰ All traced. All switchable. ๐Ÿ”— Run smarter: langdb.ai #LLM #OpenAI #LangDB

<a href="/OpenAI/">OpenAI</a> GPT-4.1 Family is now live on <a href="/LangdbAi/">LangDB</a> 

Pick your GPT:
โš™๏ธ 4.1 โ€“ 55% SWE-bench, 1M context
โšก 4.1 mini โ€“ 40% faster, 3x smarter than 4o mini
๐Ÿš€ 4.1 nano โ€“ fastest &amp; cheapest

๐Ÿ“‰ All traced. All switchable. 

๐Ÿ”— Run smarter: langdb.ai
#LLM #OpenAI #LangDB
Mrunmay Shelar (@mrunmayshelar) 's Twitter Profile Photo

Built a todo form using a prompt like this: ๐˜ˆ๐˜ฅ๐˜ฅ ๐˜ด๐˜ฆ๐˜ณ๐˜ท๐˜ฆ๐˜ณ ๐˜ข๐˜ค๐˜ต๐˜ช๐˜ฐ๐˜ฏ๐˜ด, ๐˜ถ๐˜ด๐˜ฆ๐˜๐˜ฐ๐˜ณ๐˜ฎ๐˜š๐˜ต๐˜ข๐˜ต๐˜ฆ, ๐˜ก๐˜ฐ๐˜ฅ ๐˜ท๐˜ข๐˜ญ๐˜ช๐˜ฅ๐˜ข๐˜ต๐˜ช๐˜ฐ๐˜ฏ. ๐˜œ๐˜ด๐˜ฆ ๐˜ค๐˜ฐ๐˜ฏ๐˜ต๐˜ฆ๐˜น๐˜ต7 ๐˜ข๐˜ฏ๐˜ฅ ๐˜ด๐˜ฆ๐˜ฒ๐˜ถ๐˜ฆ๐˜ฏ๐˜ต๐˜ช๐˜ข๐˜ญ๐˜›๐˜ฉ๐˜ช๐˜ฏ๐˜ฌ๐˜ช๐˜ฏ๐˜จ. No stale docs. Less Hallucinations. with Windsurf and LangDB ๐Ÿงต:

Mrunmay Shelar (@mrunmayshelar) 's Twitter Profile Photo

Integrating AI agents with tools like GitHub, Slack, or ClickHouse sounds simpleโ€”until you're managing multiple APIs, credentials, and weird edge cases. Here's how Virtual MCP Servers help you skip the chaos ๐Ÿงต

Mrunmay Shelar (@mrunmayshelar) 's Twitter Profile Photo

Figma Supabase Tech I used: - Windsurf (AI Code Editor) - Figma MCP (Live design tokens) - Supabase MCP (Live database models) - Upstash's Context7 ( Live Docs) - LangDB's Virtual MCP (to combine only the tools I needed into a single endpoint)

Mrunmay Shelar (@mrunmayshelar) 's Twitter Profile Photo

Bonus Tip: Using LangDB 's Virtual MCP meant I didnโ€™t have to wire multiple servers manually. Only the tools I actually needed, unified cleanly. Less setup. More focus on building.

LangDB (@langdbai) 's Twitter Profile Photo

Ever hit the 40-tool wall in Cursor , Anthropic's Claude or Windsurf ? ๐Ÿค” LangDBโ€™s Virtual MCP Server merges multiple MCP endpoints into oneโ€”so you load only the tools your agent needs. No unused tools. One endpoint. Leaner context. ๐Ÿš€ Learn more:

Mrunmay Shelar (@mrunmayshelar) 's Twitter Profile Photo

Built an agent using the Google ADK. Instead of hardcoding everything, we offloaded logic to LangDB AI Gateway that lets you manage prompts, MCP, and guardrails without redeploying code. Hereโ€™s how ๐Ÿ‘‡