Arghya Bhowmik (@arghyabhowmik5) 's Twitter Profile
Arghya Bhowmik

@arghyabhowmik5

Tenured Associate Professor - Technical University of Denmark. Autonomous accelerated multiscale materials design. Energy materials - battery, catalysis.

ID: 1059727950789120000

calendar_today06-11-2018 08:43:27

105 Tweet

229 Takipçi

218 Takip Edilen

Jan Jensen (janhjensen.bsky.social) (@janhjensen) 's Twitter Profile Photo

Cheap turns superior: A linear regression-based correction method to reaction energy from DFT | ChemRxiv doi.org/10.26434/chemr… #compchem

Ivano Castelli (@ivano_castelli) 's Twitter Profile Photo

Our recent work is out on Research Square: Accelerated Autonomous Workflow For Antiperovskite-based Solid State Electrolytes researchsquare.com/article/rs-178… BenjaminSjølin PeterBJørgensen AndreaFedrigucci Tejs Vegge Arghya Bhowmik BIG-MAP DTU Energy

JCIM & JCTC Journals (@jcim_jctc) 's Twitter Profile Photo

Cheap Turns Superior: A Linear Regression-Based Correction Method to Reaction Energy from the DFT. #DensityFunctionalTheory #DFT pubs.acs.org/doi/10.1021/ac… Tejs Vegge Arghya Bhowmik #current_issue #JCIM #copmchem

Cheap Turns Superior: A Linear Regression-Based Correction Method to Reaction Energy from the DFT. #DensityFunctionalTheory #DFT 
pubs.acs.org/doi/10.1021/ac… 
<a href="/TVegge/">Tejs Vegge</a> <a href="/ArghyaBhowmik5/">Arghya Bhowmik</a> 
#current_issue #JCIM #copmchem
Digital Discovery (@digital_rsc) 's Twitter Profile Photo

Today's featured article from Rieger (Laura Hannemose Rieger), Bhowmik et al.: A neural network to predict battery cell  trajectories with a 10.6% MAPE. Uncertainty allows for intelligent truncation of cycling experiments. Read the #openaccess article: doi.org/10.1039/D2DD00…

Today's featured article from Rieger (<a href="/laura_rieger_de/">Laura Hannemose Rieger</a>), Bhowmik et al.: A neural network to predict battery cell  trajectories with a 10.6% MAPE. Uncertainty allows for intelligent truncation of cycling experiments. Read the #openaccess article: doi.org/10.1039/D2DD00…
BIG-MAP (@bigmap_eu) 's Twitter Profile Photo

📰"Uncertainty-aware and explainable machine learning for early prediction of battery degradation trajectory" by our 🇩🇰 & 🇪🇸 partners is available in Digital Discovery Find the #openaccess article here ⬇️ doi.org/10.1039/D2DD00… BATTERY 2030 +

Tejs Vegge (@tvegge) 's Twitter Profile Photo

A nice🎁from Scientific Data publishing our #Transition1x benchmark dataset with 10M DFT calculations for learning molecular transition states. 🙌Mathias Schreiner, Jonas Busk Arghya Bhowmik Ole Winther. SURE project Novo Nordisk Foundation and BIG-MAP #AI nature.com/articles/s4159…

Machine Learning: Science and Technology (@mlstjournal) 's Twitter Profile Photo

'NeuralNEB—#neuralnetworks can find reaction paths fast' by Tejs Vegge Ole Winther Arghya Bhowmik Mathias Schreiner and Peter Bjørn Jørgensen DTU hits 500 downloads! bit.ly/3WfoCW1 #compchem #machinelearning #AI #materials #energy #DFT #algorithms #quantum #condmat

'NeuralNEB—#neuralnetworks can find reaction paths fast' by <a href="/TVegge/">Tejs Vegge</a> <a href="/OleWinther1/">Ole Winther</a> <a href="/ArghyaBhowmik5/">Arghya Bhowmik</a> Mathias Schreiner and Peter Bjørn Jørgensen <a href="/DTUtweet/">DTU</a> hits 500 downloads! bit.ly/3WfoCW1 #compchem #machinelearning #AI #materials #energy #DFT #algorithms #quantum #condmat
BIG-MAP (@bigmap_eu) 's Twitter Profile Photo

📰"Uncertainty-aware and explainable machine learning for early prediction of battery degradation trajectory" written by Laura Hannemose Rieger Elixabete Ayerbe Ole Winther, Eibar Flores, Poul Norby, Kristian Nielsen, Tejs Vegge and Arghya Bhowmik is available here ⬇️ doi.org/10.1039/D2DD00…

📰"Uncertainty-aware and explainable machine learning for early prediction of battery degradation trajectory" written by <a href="/laura_rieger_de/">Laura Hannemose Rieger</a> <a href="/Eayerbe1/">Elixabete Ayerbe</a> <a href="/OleWinther1/">Ole Winther</a>, Eibar Flores, Poul Norby, Kristian Nielsen,  <a href="/TVegge/">Tejs Vegge</a> and <a href="/ArghyaBhowmik5/">Arghya Bhowmik</a> is available here ⬇️
doi.org/10.1039/D2DD00…
BIG-MAP (@bigmap_eu) 's Twitter Profile Photo

📰Congratulations to Mathias Schreiner, Arghya Bhowmik, Tejs Vegge Jonas Busk and Ole Winther for their article "#Transition1x - a dataset for building generalizable reactive machine learning potentials" published in Scientific Data ⬇️ nature.com/articles/s4159…

Tejs Vegge (@tvegge) 's Twitter Profile Photo

Uncertainty-aware GNN potentials to accelerate modeling of complex chemical reactions at electrochemical interfaces with an explicit solvent under ambient conditions. Xin Yang Arghya Bhowmik Heine A. Hansen💪DTU Energy Chemical Science Carlsbergfondet pubs.rsc.org/en/content/art…

Machine Learning: Science and Technology (@mlstjournal) 's Twitter Profile Photo

Great new work by Jonas Elsborg and Arghya Bhowmik DTU Energy DTU - 'ArtiSAN: navigating the complexity of material #structures with deep #reinforcementlearning' - iopscience.iop.org/article/10.108… #machinelearning #materials #AI #catalysis #compchem #alloys #energy #graphs

Great new work by Jonas Elsborg and <a href="/ArghyaBhowmik5/">Arghya Bhowmik</a> <a href="/DTUEnergy/">DTU Energy</a> <a href="/DTUtweet/">DTU</a> - 'ArtiSAN: navigating the complexity of material #structures with deep #reinforcementlearning' - iopscience.iop.org/article/10.108… #machinelearning #materials #AI #catalysis #compchem #alloys #energy #graphs
J. Mater. Chem. family (@jmaterchem) 's Twitter Profile Photo

J. Mater. Chem. family A is delighted to share our latest themed collection, showcasing emerging research discovering, characterizing, and upscaling energy materials, accelerated by AI and automated methods. Read the full collection at rsc.li/JMCA-HTS

<a href="/JMaterChem/">J. Mater. Chem. family</a> A is delighted to share our latest themed collection, showcasing emerging research discovering, characterizing, and upscaling energy materials, accelerated by AI and automated methods.

Read the full collection at rsc.li/JMCA-HTS
Laura Hannemose Rieger (@laura_rieger_de) 's Twitter Profile Photo

Our open-source benchmark dataset and code for phase field simulations is live! Designed to accelerate ML development for microstructure evolution using physics-based modeling with U-Nets. Check it out: nature.com/articles/s4159… Arghya Bhowmik BIG-MAP BATTERY 2030 +